Here DD, let me help you out. These are two studies you posted earlier. Where does it say glucose isn't stored as fat? Take your time, I'll wait until you're done.
Am J Clin Nutr. 1987 Jan;45(1):78-85.
Links
Carbohydrate metabolism and de novo lipogenesis in human obesity.
Acheson KJ, Schutz Y, Bessard T, Flatt JP, Jéquier E.
Respiratory exchange was measured during 14 consecutive hours in six lean and six obese individuals after ingestion of 500 g of dextrin maltose to investigate and compare their capacity for net de novo lipogenesis. After ingestion of the carbohydrate load, metabolic rates rose similarly in both groups but fell earlier and more rapidly in the obese. RQs also rose rapidly and remained in the range of 0.95 to 1.00 for approximately 8 h in both groups. During this time, RQ exceeded 1.00 for only short periods of time with the result that 4 +/- 1 g and 5 +/- 3 g (NS) of fat were synthesized via de novo lipogenesis in excess of concomitant fat oxidation in the lean and obese subjects, respectively. Results demonstrate that net de novo lipid synthesis from an unusually large carbohydrate load is not greater in obese than in lean individuals.
Eur J Clin Nutr. 1999 Apr;53 Suppl 1:S53-65.
De novo lipogenesis in humans: metabolic and regulatory aspects.
Hellerstein MK1.
Author information
Abstract
The enzymatic pathway for converting dietary carbohydrate (CHO) into fat, or de novo lipogenesis (DNL), is present in humans, whereas the capacity to convert fats into CHO does not exist. Here, the quantitative importance of DNL in humans is reviewed, focusing on the response to increased intake of dietary CHO. Eucaloric replacement of dietary fat by CHO does not induce hepatic DNL to any substantial degree. Similarly, addition of CHO to a mixed diet does not increase hepatic DNL to quantitatively important levels, as long as CHO energy intake remains less than total energy expenditure (TEE). Instead, dietary CHO replaces fat in the whole-body fuel mixture, even in the post-absorptive state. Body fat is thereby accrued, but the pathway of DNL is not traversed; instead, a coordinated set of metabolic adaptations, including resistance of hepatic glucose production to suppression by insulin, occurs that allows CHO oxidation to increase and match CHO intake. Only when CHO energy intake exceeds TEE does DNL in liver or adipose tissue contribute significantly to the whole-body energy economy. It is concluded that DNL is not the pathway of first resort for added dietary CHO, in humans. Under most dietary conditions, the two major macronutrient energy sources (CHO and fat) are therefore not interconvertible currencies; CHO and fat have independent, though interacting, economies and independent regulation. The metabolic mechanisms and physiologic implications of the functional block between CHO and fat in humans are discussed, but require further investigation.
Am J Clin Nutr. 1987 Jan;45(1):78-85.
Carbohydrate metabolism and de novo lipogenesis in human obesity.
Acheson KJ, Schutz Y, Bessard T, Flatt JP, Jéquier E.
Respiratory exchange was measured during 14 consecutive hours in six lean and six obese individuals after ingestion of 500 g of dextrin maltose to investigate and compare their capacity for net de novo lipogenesis. After ingestion of the carbohydrate load, metabolic rates rose similarly in both groups but fell earlier and more rapidly in the obese. RQs also rose rapidly and remained in the range of 0.95 to 1.00 for approximately 8 h in both groups. During this time, RQ exceeded 1.00 for only short periods of time with the result that 4 +/- 1 g and 5 +/- 3 g (NS) of fat were synthesized via de novo lipogenesis in excess of concomitant fat oxidation in the lean and obese subjects, respectively. Results demonstrate that net de novo lipid synthesis from an unusually large carbohydrate load is not greater in obese than in lean individuals.
Eur J Clin Nutr. 1999 Apr;53 Suppl 1:S53-65.
De novo lipogenesis in humans: metabolic and regulatory aspects.
Hellerstein MK1.
Author information
Abstract
The enzymatic pathway for converting dietary carbohydrate (CHO) into fat, or de novo lipogenesis (DNL), is present in humans, whereas the capacity to convert fats into CHO does not exist. Here, the quantitative importance of DNL in humans is reviewed, focusing on the response to increased intake of dietary CHO. Eucaloric replacement of dietary fat by CHO does not induce hepatic DNL to any substantial degree. Similarly, addition of CHO to a mixed diet does not increase hepatic DNL to quantitatively important levels, as long as CHO energy intake remains less than total energy expenditure (TEE). Instead, dietary CHO replaces fat in the whole-body fuel mixture, even in the post-absorptive state. Body fat is thereby accrued, but the pathway of DNL is not traversed; instead, a coordinated set of metabolic adaptations, including resistance of hepatic glucose production to suppression by insulin, occurs that allows CHO oxidation to increase and match CHO intake. Only when CHO energy intake exceeds TEE does DNL in liver or adipose tissue contribute significantly to the whole-body energy economy. It is concluded that DNL is not the pathway of first resort for added dietary CHO, in humans. Under most dietary conditions, the two major macronutrient energy sources (CHO and fat) are therefore not interconvertible currencies; CHO and fat have independent, though interacting, economies and independent regulation. The metabolic mechanisms and physiologic implications of the functional block between CHO and fat in humans are discussed, but require further investigation.
