Simsek E, Montenegro LR, Binay C, Demiral M, Acikalin MF, Latronico AC. Clinical and Hormonal Features of a Male Adolescent with Congenital Isolated Follicle-Stimulating Hormone Deficiency. Horm Res Paediatr. http://www.karger.com/Article/Abstract/442289
AIM: Our aim was to describe the clinical and genetic findings in an adolescent male with isolated follicle-stimulating hormone (FSH) deficiency and demonstrate the efficacy of recombinant human FSH (rhFSH) replacement in this case.
METHODS: A 14.5-year-old adolescent male was referred with normal pubertal development and small testes. Serum testosterone, FSH, and luteinising hormone (LH) were measured at baseline and after gonadotropin-releasing hormone (GnRH) stimulation. Testicular biopsy was performed, and rhFSH replacement was administered for 6 months. The patient's FSHbeta gene was amplified and sequenced.
RESULTS: Basal and GnRH-stimulated FSH levels were undetectable, in contrast with increased LH levels under both conditions. Histopathological investigation of a testicular biopsy specimen revealed a reduced number of Sertoli cells, the absence of germ cells, Leydig cell hyperplasia, and a thickened basement membrane in seminiferous tubules.
The testicular size changed from 1 ml at baseline to 6 ml after 6 months of rhFSH replacement.
Sequencing of the FSHbeta gene exon 3 revealed a new missense mutation (c.364T>C, resulting in p.Cys122Arg) in a homozygous state in the patient; both parents and a sister carried the same mutation in a heterozygous state. We also compared our case with all similar cases published previously.
CONCLUSION: We herein described an adolescent male with isolated FSH deficiency due to a novel FSHbeta gene mutation associated with a prepubertal testes size and normal virilisation.
AIM: Our aim was to describe the clinical and genetic findings in an adolescent male with isolated follicle-stimulating hormone (FSH) deficiency and demonstrate the efficacy of recombinant human FSH (rhFSH) replacement in this case.
METHODS: A 14.5-year-old adolescent male was referred with normal pubertal development and small testes. Serum testosterone, FSH, and luteinising hormone (LH) were measured at baseline and after gonadotropin-releasing hormone (GnRH) stimulation. Testicular biopsy was performed, and rhFSH replacement was administered for 6 months. The patient's FSHbeta gene was amplified and sequenced.
RESULTS: Basal and GnRH-stimulated FSH levels were undetectable, in contrast with increased LH levels under both conditions. Histopathological investigation of a testicular biopsy specimen revealed a reduced number of Sertoli cells, the absence of germ cells, Leydig cell hyperplasia, and a thickened basement membrane in seminiferous tubules.
The testicular size changed from 1 ml at baseline to 6 ml after 6 months of rhFSH replacement.
Sequencing of the FSHbeta gene exon 3 revealed a new missense mutation (c.364T>C, resulting in p.Cys122Arg) in a homozygous state in the patient; both parents and a sister carried the same mutation in a heterozygous state. We also compared our case with all similar cases published previously.
CONCLUSION: We herein described an adolescent male with isolated FSH deficiency due to a novel FSHbeta gene mutation associated with a prepubertal testes size and normal virilisation.