Narayanan RP, Gittins M, Siddals KW, et al. Atorvastatin administration is associated with dose-related changes in IGF bioavailability. European Journal of Endocrinology. http://www.eje-online.org/content/early/2013/01/18/EJE-12-0844.abstract
Objective: Insulin-like growth factor (IGF) levels, their binding proteins (IGFBPs), and high-dose statin therapy, have all been linked to the development of diabetes. We aimed to identify whether atorvastatin caused dose-related changes in IGF proteins.
Design and methods: We measured IGF1, IGF2, IGFBP1 and IGFBP3 concentrations at baseline, 6 months and 12 months in PANDA trial participants with type 2 diabetes randomised to 10mg (n=59) vs 80mg (n=60) of atorvastatin (N=119; mean (SD): age 64(10) years; 83% male; HbA1c 61(10) mmol/mol; blood pressure 131/73 mmHg.
Results: Atorvastatin was associated with overall reductions in circulating IGF1, IGF2 and IGFBP3 concentrations. The adjusted mean (95% CI) between-group differences that indicate dose-related changes in IGF proteins were not significant for: IGF1: -3 (-21 to 14) ng/ml; IGF2: -23 (-65 to 18) ng/ml; and IGFBP3: -0.34 (-0.71 to 0.03) µg/ml; negative values indicating numerically greater lowering with high-dose). The IGFBP1 concentration did not change overall with atorvastatin therapy overall but the adjusted mean (95% CI) between-group difference indicating a dose-related change in log IGFBP1 was highly significant -0.41 (-0.69 to 0-0.13, p=0.004).
Conclusion: IGF1, IGF2 and IGFBP3 concentrations all decreased following atorvastatin therapy. A differential effect of low vs high dose atorvastatin on IGFBP1 concentrations was observed with likely implications for IGF bioavailability. The dose-related differential impact of atorvastatin treatment on concentration of IGF proteins merits investigation as a mechanism to explain the worsening of glucose tolerance with statin therapy.
Objective: Insulin-like growth factor (IGF) levels, their binding proteins (IGFBPs), and high-dose statin therapy, have all been linked to the development of diabetes. We aimed to identify whether atorvastatin caused dose-related changes in IGF proteins.
Design and methods: We measured IGF1, IGF2, IGFBP1 and IGFBP3 concentrations at baseline, 6 months and 12 months in PANDA trial participants with type 2 diabetes randomised to 10mg (n=59) vs 80mg (n=60) of atorvastatin (N=119; mean (SD): age 64(10) years; 83% male; HbA1c 61(10) mmol/mol; blood pressure 131/73 mmHg.
Results: Atorvastatin was associated with overall reductions in circulating IGF1, IGF2 and IGFBP3 concentrations. The adjusted mean (95% CI) between-group differences that indicate dose-related changes in IGF proteins were not significant for: IGF1: -3 (-21 to 14) ng/ml; IGF2: -23 (-65 to 18) ng/ml; and IGFBP3: -0.34 (-0.71 to 0.03) µg/ml; negative values indicating numerically greater lowering with high-dose). The IGFBP1 concentration did not change overall with atorvastatin therapy overall but the adjusted mean (95% CI) between-group difference indicating a dose-related change in log IGFBP1 was highly significant -0.41 (-0.69 to 0-0.13, p=0.004).
Conclusion: IGF1, IGF2 and IGFBP3 concentrations all decreased following atorvastatin therapy. A differential effect of low vs high dose atorvastatin on IGFBP1 concentrations was observed with likely implications for IGF bioavailability. The dose-related differential impact of atorvastatin treatment on concentration of IGF proteins merits investigation as a mechanism to explain the worsening of glucose tolerance with statin therapy.