Climate Change

James Painter and Teresa A. Cross-national comparison of the presence of climate scepticism in the print media in six countries, 2007-10. Environmental Research Letters 202;7(4):044005. Cross-national comparison of the presence of climate scepticism in the print media in six countries, 2007–10 - IOPscience

Previous academic research on climate scepticism has tended to focus more on the way it has been organized, its tactics and its impact on policy outputs than on its prevalence in the media. Most of the literature has centred on the USA, where scepticism first appeared in an organized and politically effective form. This letter contrasts the way climate scepticism in its different forms is manifested in the print media in the USA and five other countries (Brazil, China, France, India and the UK), in order to gain insight into how far the US experience of scepticism is replicated in other countries. It finds that news coverage of scepticism is mostly limited to the USA and the UK; that there is a strong correspondence between the political leaning of a newspaper and its willingness to quote or use uncontested sceptical voices in opinion pieces; and that the type of sceptics who question whether global temperatures are warming are almost exclusively found in the US and UK newspapers. Sceptics who challenge the need for robust action to combat climate change also have a much stronger presence in the media of the same two countries.
 
It's Global Warming, Stupid
It's Global Warming, Stupid - Businessweek

11512_newsstand.jpg
 
Rapid Sea-Level Rise and Its Impacts: Past, Present, and Future I
https://gsa.confex.com/gsa/2012AM/finalprogram/session_30943.htm
 
Climate Change Faster Than Predicted
Earth's atmosphere may be more sensitive to carbon dioxide than previously thought, which means that extreme weather events could become more frequent
Climate Change Faster Than Predicted: Scientific American

Climate change is likely to be worse than many computer models have projected, according to a new analysis.

The work, published yesterday in Science, finds evidence that Earth's climate is more sensitive to the amount of carbon dioxide in the atmosphere than some earlier studies had suggested.

If the new results are correct, that means warming will come on faster, and be more intense, than many current predictions. Moreover, the impacts of that warming, including sea level rise, drought, floods and other extreme weather, could hit earlier and harder than many models project, said study co-author John Fasullo, a climate scientist at the National Center for Atmospheric Research.

"Temperatures are likely to go up to the high side of current projections, as is [atmospheric] water vapor," he said. "To the extent those environmental impacts influence events like [Superstorm] Sandy, expect the impacts to be on the high side."


Fasullo JT, Trenberth KE. A Less Cloudy Future: The Role of Subtropical Subsidence in Climate Sensitivity. Science 2012;338(6108):792-4. A Less Cloudy Future: The Role of Subtropical Subsidence in Climate Sensitivity

An observable constraint on climate sensitivity, based on variations in mid-tropospheric relative humidity (RH) and their impact on clouds, is proposed. We show that the tropics and subtropics are linked by teleconnections that induce seasonal RH variations that relate strongly to albedo (via clouds), and that this covariability is mimicked in a warming climate. A present-day analog for future trends is thus identified whereby the intensity of subtropical dry zones in models associated with the boreal monsoon is strongly linked to projected cloud trends, reflected solar radiation, and model sensitivity. Many models, particularly those with low climate sensitivity, fail to adequately resolve these teleconnections and hence are identifiably biased. Improving model fidelity in matching observed variations provides a viable path forward for better predicting future climate.
 
Enhanced Melting of Northern Greenland in a Warm Climate
Enhanced melting of Northern Greenland in a warm climate


Born A, Nisancioglu KH. Melting of Northern Greenland during the last interglaciation. The Cryosphere 2012;6(6):1239-50. TC - Abstract - Melting of Northern Greenland during the last interglaciation

Using simulated climate data from the comprehensive coupled climate model IPSL CM4, we simulate the Greenland ice sheet (GrIS) during the Eemian interglaciation with the three-dimensional ice sheet model SICOPOLIS. The Eemian is a period 126 000 yr before present (126 ka) with Arctic temperatures comparable to projections for the end of this century. In our simulation, the northeastern part of the GrIS is unstable and retreats significantly, despite moderate melt rates. This result is found to be robust to perturbations within a wide parameter space of key parameters of the ice sheet model, the choice of initial ice temperature, and has been reproduced with climate forcing from a second coupled climate model, the CCSM3. It is shown that the northeast GrIS is the most vulnerable. Even a small increase in melt removes many years of ice accumulation, giving a large mass imbalance and triggering the strong ice-elevation feedback. Unlike the south and west, melting in the northeast is not compensated by high accumulation. The analogy with modern warming suggests that in coming decades, positive feedbacks could increase the rate of mass loss of the northeastern GrIS, exceeding the recent observed thinning rates in the south.
 
Last edited:
NRL Scientists Detect Carbon Dioxide Accumulation t the Edge of Space
http://www.nrl.navy.mil/media/news-releases/2012/NRL-Scientists-Detect-Carbon-Dioxide-Accumulation-at-the-Edge-of-Space


Emmert JT, Stevens MH, Bernath PF, Drob DP, Boone CD. Observations of increasing carbon dioxide concentration in Earth/'s thermosphere. Nature Geosci;advance online publication. http://www.nature.com/ngeo/journal/vaop/ncurrent/full/ngeo1626.html

Carbon dioxide occurs naturally throughout Earth’satmosphere. In the thermosphere, CO2 is the primary radiative cooling agent and fundamentally affects the energy balance and temperature of this high-altitude atmospheric layer1, 2. Anthropogenic CO2 increases are expected to propagate upward throughout the entire atmosphere, which should result in a cooler, more contracted thermosphere3, 4, 5. This contraction, in turn, will reduce atmospheric drag on satellites and may have adverse consequences for the orbital debris environment that is already unstable6, 7. However, observed thermospheric mass density trends derived from satellite orbits are generally stronger than model predictions8, 9, indicating that our quantitative understanding of these changes is incomplete. So far, CO2 trends have been measured only up to 35?km altitude10, 11, 12. Here, we present direct evidence that CO2 concentrations in the upper atmosphere—probably the primary driver of long-term thermospheric trends—are increasing. We analyse eight years of CO2 and carbon monoxide mixing ratios derived from satellite-based solar occultation spectra. After correcting for seasonal–latitudinal and solar influences, we obtain an estimated global increase in COx (CO2 and CO, combined) concentrations of 23.5±6.3?ppm per decade at an altitude of 101?km, about 10?ppm per decade faster than predicted by an upper atmospheric model. We suggest that this discrepancy may explain why the thermospheric density decrease is stronger than expected.
 
Fettweis MTaX. 21st century projections of surface mass balance changes for major drainage systems of the Greenland ice sheet. Environmental Research Letters 2012:045405. http://iopscience.iop.org/1748-9326/7/4/045405/pdf/1748-9326_7_4_045405.pdf

Outputs from the regional climate model Modèle Atmosphérique Régionale at a spatial resolution of 25 km are used to study 21st century projected surface mass balance (SMB) over six major drainage basins of the Greenland ice sheet (GrIS). The regional model is forced with the outputs of three different Earth System Models (CanESM2, NorESM1 and MIROC5) obtained when considering two greenhouse gas future scenarios with levels of CO2 equivalent of, respectively, 850 and >1370 ppm by 2100. Results indicate that the increase in runoff due to warming will exceed the increased precipitation deriving from the increase in evaporation for all basins, with the amount of net loss of mass at the surface varying spatially. Basins along the southwest and north coast are projected to have the highest sensitivity of SMB to increasing temperatures. For these basins, the global temperature anomaly corresponding to a decrease of the SMB below the 1980–99 average (when the ice sheet was near the equilibrium) ranges between +0.60 and +2.16?°C. For the basins along the northwest and northeast, these values range between +1.50 and +3.40?°C. Our results are conservative as they do not account for ice dynamics and changes in the ice sheet topography.
 
Math Trek: Game theory suggests current climate negotiations won’t avert catastrophe
http://www.sciencenews.org/view/generic/id/346418/title/Math_Trek_Game_theory_suggests_current_climate_negotiations_won%E2%80%99t_avert_catastrophe


Barrett S, Dannenberg A. Climate negotiations under scientific uncertainty. Proceedings of the National Academy of Sciences 2012;109(43):17372-6. Climate negotiations under scientific uncertainty

How does uncertainty about “dangerous” climate change affect the prospects for international cooperation? Climate negotiations usually are depicted as a prisoners’ dilemma game; collectively, countries are better off reducing their emissions, but self-interest impels them to keep on emitting. We provide experimental evidence, grounded in an analytical framework, showing that the fear of crossing a dangerous threshold can turn climate negotiations into a coordination game, making collective action to avoid a dangerous threshold virtually assured. These results are robust to uncertainty about the impact of crossing a threshold, but uncertainty about the location of the threshold turns the game back into a prisoners’ dilemma, causing cooperation to collapse. Our research explains the paradox of why countries would agree to a collective goal, aimed at reducing the risk of catastrophe, but act as if they were blind to this risk.
 
Last edited:
Be persuasive. Be brave. Be arrested (if necessary)
A resource crisis exacerbated by global warming is looming, argues financier Jeremy Grantham. More scientists must speak out.
Be persuasive. Be brave. Be arrested (if necessary) : Nature News & Comment

14 November 2012

I have yet to meet a climate scientist who does not believe that global warming is a worse problem than they thought a few years ago. The seriousness of this change is not appreciated by politicians and the public. The scientific world carefully measures the speed with which we approach the cliff and will, no doubt, carefully measure our rate of fall. But it is not doing enough to stop it. I am a specialist in investment bubbles, not climate science. But the effects of climate change can only exacerbate the ecological trouble I see reflected in the financial markets — soaring commodity prices and impending shortages.

My firm warned of vastly inflated Japanese equities in 1989 — the grandmother of all bubbles — US growth stocks in 2000 and everything risky in late 2007. The usual mix of investor wishful thinking and dangerous and cynical encouragement from industrial vested interests made these bubbles possible. Prices of global raw materials are now rising fast. This does not constitute a bubble, however, but is a genuine paradigm shift, perhaps the most important economic change since the Industrial Revolution. Simply, we are running out.

The price index of 33 important commodities declined by 70% over the 100 years up to 2002 — an enormous help to industrialized countries in getting rich. Only one commodity, oil, had been flat until 1972 and then, with the advent of the Organization of the Petroleum Exporting Countries, it began to rise. But since 2002, prices of almost all the other commodities, plus oil, tripled in six years; all without a world war and without much comment. Even if prices fell tomorrow by 20% they would still on average have doubled in 10 years, the equivalent of a 7% annual rise.

This price surge is a response to global population growth and the explosion of capital spending in China. Especially dangerous to social stability and human well-being are food prices and food costs. Growth in the productivity of grains has fallen to 1.2% a year, which is exactly equal to the global population growth rate. There is now no safety margin.

Then there is the impending shortage of two fertilizers: phosphorus (phosphate) and potassium (potash). These two elements cannot be made, cannot be substituted, are necessary to grow all life forms, and are mined and depleted. It’s a scary set of statements. Former Soviet states and Canada have more than 70% of the potash. Morocco has 85% of all high-grade phosphates. It is the most important quasi-monopoly in economic history.

What happens when these fertilizers run out is a question I can’t get satisfactorily answered and, believe me, I have tried. There seems to be only one conclusion: their use must be drastically reduced in the next 20–40 years or we will begin to starve.

The world’s blind spot when it comes to the fertilizer problem is seen also in the shocking lack of awareness on the part of governments and the public of the increasing damage to agriculture by climate change; for example, runs of extreme weather that have slashed grain harvests in the past few years. Recognition of the facts is delayed by the frankly brilliant propaganda and obfuscation delivered by energy interests that virtually own the US Congress. (It is not unlike the part played by the financial industry when investment bubbles start to form … but that, at least, is only money.) We need oil producers to leave 80% of proven reserves untapped to achieve a stable climate. As a former oil analyst, I can easily calculate oil companies’ enthusiasm to leave 80% of their value in the ground — absolutely nil.

The damaging effects of climate change are accelerating. James Hansen of NASA has screamed warnings for 30 years. Although at first he was dismissed as a madman, almost all his early predictions, disturbingly, have proved conservative in relation to what has actually happened. In 2011, Hansen was arrested in Washington DC, alongside Gus Speth, the retired dean of Yale University’s environmental school; Bill McKibben, one of the earliest and most passionate environmentalists to warn about global warming; and my daughter-in-law, all for protesting over a pipeline planned to carry Canadian bitumen to refineries in the United States, bitumen so thick it needs masses of water even to move it. From his seat in jail, Speth said that he had held some important positions in Washington, but none more important than this one.

President Barack Obama missed the chance of a lifetime to get a climate bill passed, and his great environmental and energy scientists John Holdren and Steven Chu went missing in action. Scientists are understandably protective of the dignity of science and are horrified by publicity and overstatement. These fears, unfortunately, are not shared by their opponents, which makes for a rather painful one-sided battle. Overstatement may generally be dangerous in science (it certainly is for careers) but for climate change, uniquely, understatement is even riskier and therefore, arguably, unethical.

It is crucial that scientists take more career risks and sound a more realistic, more desperate, note on the global-warming problem. Younger scientists are obsessed by thoughts of tenure, so it is probably up to older, senior and retired scientists to do the heavy lifting. Be arrested if necessary. This is not only the crisis of your lives — it is also the crisis of our species’ existence. I implore you to be brave.
 
Rupper S, Schaefer JM, Burgener LK, Koenig LS, Tsering K, Cook ER. Sensitivity and response of Bhutanese glaciers to atmospheric warming. Geophys Res Lett 2012;39(19):L19503. http://www.agu.org/pubs/crossref/2012/2012GL053010.shtml

Glacierized change in the Himalayas affects river-discharge, hydro-energy and agricultural production, and Glacial Lake Outburst Flood potential, but its quantification and extent of impacts remains highly uncertain. Here we present conservative, comprehensive and quantitative predictions for glacier area and meltwater flux changes in Bhutan, monsoonal Himalayas. In particular, we quantify the uncertainties associated with the glacier area and meltwater flux changes due to uncertainty in climate data, a critical problem for much of High Asia. Based on a suite of gridded climate data and a robust glacier melt model, our results show that glacier area and meltwater change projections can vary by an order of magnitude for different climate datasets. However, the most conservative results indicate that, even if climate were to remain at the present-day mean values, almost 10% of Bhutan's glacierized area would vanish and the meltwater flux would drop by as much as 30%. Under the conservative scenario of an additional 1°C regional warming, glacier retreat is going to continue until about 25% of Bhutan's glacierized area will have disappeared and the annual meltwater flux, after an initial spike, would drop by as much as 65%.
 
Back
Top